Appendix F: Ecology
F-5B Appendix to Underwater Ambient Sound Level in the Hudson River near the Tappan Zee Bridge: Short and Long Span Ambient Noise Modeling (Jasco, July 2011)
Tappan Zee Bridge Construction
Hydroacoustic Noise Modeling

Appendices

Submitted to:
AECOM
One World Financial Center
200 Liberty St, 25th Floor
New York, NY 10281

Authors:
Alexander MacGillivray
Graham Warner
Roberto Racca
Caitlin O’Neill

March 2011
P001116-001
Version 1.0
Contents

APPENDIX A. CUMULATIVE CSEL SCENARIO MAPS A-1
 A.1. SINGLE LEVEL BRIDGE: NO BMPS APPLIED A-1
 A.1.1. Max Case 1 (also dual level bridge) A-1
 A.1.2. Max Case 2A .. A-2
 A.1.3. Max Case 3 (also dual level bridge) A-3
 A.1.4. Typical Case 1 (also dual level bridge) A-4
 A.1.5. Typical Case 2A A-5
 A.1.6. Typical Case 3 (also dual level bridge) A-6
 A.2. SINGLE LEVEL BRIDGE: BMPs APPLIED A-7
 A.2.1. Max Case 1 (also dual level bridge) A-7
 A.2.2. Max Case 2A .. A-8
 A.2.3. Max Case 3 (also dual level bridge) A-9
 A.2.4. Typical Case 1 (also dual level bridge) A-10
 A.2.5. Typical Case 2A A-11
 A.2.6. Typical Case 3 (also dual level bridge) A-12
 A.3. DUAL LEVEL BRIDGE: NO BMPs APPLIED A-13
 A.3.1. Max Case 1 ... A-13
 A.3.2. Max Case 2B .. A-14
 A.3.3. Max Case 3 ... A-15
 A.3.4. Typical Case 1 A-16
 A.3.5. Typical Case 2B A-17
 A.3.6. Typical Case 3 A-18
 A.4. DUAL LEVEL BRIDGE: BMPs APPLIED A-19
 A.4.1. Max Case 1 ... A-19
 A.4.2. Max Case 2B .. A-20
 A.4.3. Max Case 3 ... A-21
 A.4.4. Typical Case 1 A-22
 A.4.5. Typical Case 2B A-23
 A.4.6. Typical Case 3 A-24

APPENDIX B. SINGLE STRIKE SEL SCENARIO MAPS B-1
 B.1. SINGLE AND DUAL LEVEL BRIDGE: NO BMPs APPLIED B-1
 B.1.1. 4’ pile size ... B-1
 B.1.2. 6’ pile size ... B-2
 B.1.3. 8’ pile size ... B-3
 B.1.4. 10’ pile size .. B-4
 B.2. SINGLE AND DUAL LEVEL BRIDGE: BMPs APPLIED B-5
 B.2.1. 4’ pile size ... B-5
 B.2.2. 6’ pile size ... B-6
 B.2.3. 8’ pile size ... B-7
 B.2.4. 10’ pile size .. B-8

APPENDIX C. RMS SPL SCENARIO MAPS C-1
C.1. SINGLE AND DUAL LEVEL BRIDGE: NO BMPS APPLIED .. C-1
C.1.1. 4’ pile size .. C-1
C.1.2. 6’ pile size .. C-2
C.1.3. 8’ pile size .. C-3
C.1.4. 10’ pile size .. C-4
C.2. SINGLE AND DUAL LEVEL BRIDGE: BMPS APPLIED ... C-5
C.2.1. 4’ pile size .. C-5
C.2.2. 6’ pile size .. C-6
C.2.3. 8’ pile size .. C-7
C.2.4. 10’ pile size .. C-8

APPENDIX D. POWER SPECTRAL DENSITY LEVELS IN 1/3-OCTAVE BANDS D-1
D.1. SINGLE AND DUAL LEVEL BRIDGE: NO BMPS APPLIED .. D-1
D.1.1. 4’ pile size .. D-1
D.1.2. 6’ pile size .. D-3
D.1.3. 8’ pile size .. D-5
D.1.4. 10’ pile size .. D-7
D.2. SINGLE AND DUAL LEVEL BRIDGE: BMPS APPLIED ... D-9
D.2.1. 4’ pile size .. D-9
D.2.2. 6’ pile size .. D-11
D.2.3. 8’ pile size .. D-13
D.2.4. 10’ pile size .. D-15
Appendix A. Cumulative cSEL Scenario Maps

A.1. Single Level Bridge: No BMPs Applied

A.1.1. Max Case 1 (also dual level bridge)
A.1.2. Max Case 2A

Multiple Strike cSEL (dB re 1 \mu Pa^2) without BMPs

P23 - 3 x 4 ft piles, 3800 strikes each,
P38 - 3 x 8 ft piles, 2100 strikes each, and
P48 - 4 x 6 ft piles, 1000 strikes each

January 27, 2011
A.1.3. Max Case 3 (also dual level bridge)

Multiple Strike cSEL (dB re 1 \mu Pa^2 s) without BMPs
P8/P15 - 3 x 4 ft piles, 3800 strikes each and
P27/P48 - 4 x 6 ft piles, 1000 strikes each

January 27, 2011
A.1.4. Typical Case 1 (also dual level bridge)
A.1.5. Typical Case 2A

Multiple Strike cSEL (dB re 1 μPa²/s) without BMPs
P23 - 2 x 4 ft piles, 3800 strikes each,
P38 - 2 x 8 ft piles, 2100 strikes each, and
P48 - 2 x 6 ft piles, 1000 strikes each

January 27, 2011
A.1.6. Typical Case 3 (also dual level bridge)

![Diagram of Typical Case 3](image)

Multiple Strike cSEL (dB re 1 µPa² s) without BMPs
P12/P23 - 2 x 4 ft piles, 3800 strikes each and
P16/P30 - 2 x 4 ft piles, 3800 strikes each

January 27, 2011
A.2. Single Level Bridge: BMPs Applied

A.2.1. Max Case 1 (also dual level bridge)
A.2.2. Max Case 2A

Multiple Strike cSEL (dB re 1 \(\mu \text{Pa}^2 \text{s} \)) with BMPs

P23 - 3 x 4 ft piles, 3800 strikes each,
P38 - 3 x 8 ft piles, 2100 strikes each, and
P48 - 4 x 6 ft piles, 1000 strikes each

January 27, 2011
A.2.3. Max Case 3 (also dual level bridge)

Multiple Strike cSEL (dB re 1 μPa's) with BMPs
P8/P15 - 3 x 4 ft piles, 3800 strikes each and
P27/P48 - 4 x 6 ft piles, 1000 strikes each

January 27, 2011
A.2.4. Typical Case 1 (also dual level bridge)

Multiple Strike cSEL (dB re 1 \(\mu\)Pa\(^2\)s) with BMPs

P24/P44 - 1 x 10 ft pile, 2900 strikes each and
P25/P45 - 1 x 10 ft pile, 2900 strikes each

January 27, 2011
A.2.5. Typical Case 2A

Multiple Strike cSEL (dB re 1 μPa²s) with BMPs

- P23 - 2 x 4 ft piles, 3800 strikes each,
- P38 - 2 x 8 ft piles, 2100 strikes each, and
- P48 - 2 x 6 ft piles, 1000 strikes each

January 27, 2011
A.2.6. Typical Case 3 (also dual level bridge)
A.3. Dual Level Bridge: No BMPs Applied

A.3.1. Max Case 1

Sound level contours are identical to those of the single level bridge in section A.1.1. Max Case 1 (also dual level bridge).
A.3.2. Max Case 2B
A.3.3. Max Case 3
Sound level contours are identical to those of the single level bridge in section A.1.3. Max Case 3 (also dual level bridge).
A.3.4. Typical Case 1

Sound level contours are identical to those in the single level bridge section A.1.4. Typical Case 1 (also dual level bridge).
A.3.5. Typical Case 2B

Multiple Strike cSEL (dB re 1 μPa²s) without BMPs

P20 - 2 x 8 ft piles, 2100 strikes each and
P27 - 2 x 6 ft piles, 1000 strikes each

January 27, 2011
A.3.6. Typical Case 3
Sound level contours are identical to those of the single level bridge in section A.1.6. Typical Case 3 (also dual level bridge).
A.4. Dual Level Bridge: BMPs Applied

A.4.1. Max Case 1
Sound level contours are identical to those of the single level bridge in section A.2.1. Max Case 1 (also dual level bridge).
A.4.2. Max Case 2B

Multiple Strike cSEL (dB re 1 μPa s) with BMPs
P20 - 3 x 8 ft piles, 2100 strikes each and
P27 - 4 x 6 ft piles, 1000 strikes each

January 27, 2011
A.4.3. Max Case 3
Sound level contours are identical to those of the single level bridge in section A.2.3. Max Case 3 (also dual level bridge).
A.4.4. Typical Case 1

Sound level contours are identical to those of the single level bridge in section A.2.4. Typical Case 1 (also dual level bridge).
A.4.5. Typical Case 2B

Multiple Strike cSEL (dB re 1 μPa²s) with BMPs

P20 - 2 x 8 ft piles, 2100 strikes each and
P27 - 2 x 6 ft piles, 1000 strikes each

January 27, 2011
A.4.6. Typical Case 3

Sound level contours are identical to those of the single level bridge in section A.2.6. Typical Case 3 (also dual level bridge).
Appendix B. Single Strike SEL Scenario Maps

B.1. Single and Dual Level Bridge: No BMPs Applied

B.1.1. 4’ pile size
B.1.2. 6’ pile size

![Diagram showing Single Strike SEL (dB re 1 μPa²/s) without BMPs for P27/P48 - 6 ft pile.](image)

January 31, 2011
B.1.3. 8' pile size

Single Strike SEL (dB re 1 μPa²) without BMPs
P20/P38 - 8 ft pile

January 31, 2011
B.1.4. 10’ pile size

Single Strike SEL (dB re 1 μPa²/s) without BMPs
P24/P44 - 10 ft pile

January 31, 2011
B.2. Single and Dual Level Bridge: BMPs Applied

B.2.1. 4’ pile size
B.2.2. 6’ pile size
B.2.3. 8’ pile size

Single Strike SEL (dB re 1 μPa²/s) with BMPs
P20/P38 - 8 ft pile

January 31, 2011
B.2.4. 10’ pile size

Single Strike SEL (dB re 1 \mu Pa^2 s) with BMPs
P24/P44 - 10 ft pile

January 31, 2011
Appendix C. *rms* SPL Scenario Maps

C.1. Single and Dual Level Bridge: No BMPs Applied

C.1.1. 4’ pile size
C.1.2. 6’ pile size

ms SPL (dB re 1 μPa) without BMPs

P27/P48 - 6 ft pile

February 1, 2011
C.1.3. 8' pile size
C.1.4. 10' pile size

ms SPL (dB re 1 μPa) without BMPs

P24/P44 - 10 ft pile

February 1, 2011
C.2. Single and Dual Level Bridge: BMPs Applied

C.2.1. 4’ pile size
C.2.2. 6’ pile size

[Diagram showing the acoustic noise modeling results for a 6' pile size on February 1, 2011]
C.2.3. 8’ pile size
C.2.4. 10' pile size
Appendix D. Power Spectral Density Levels in 1/3-Octave Bands

D.1. Single and Dual Level Bridge: No BMPs Applied

D.1.1. 4’ pile size
Power spectral density levels (dB re 1 µPa²/Hz) for Scenario 17: Impact hammering a 4 ft diameter pile at Pier 12/23 without BMPs.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>CC1</th>
<th>CC2</th>
<th>CC3</th>
<th>CC4</th>
<th>CC5</th>
<th>SC1</th>
<th>WC1</th>
<th>WC2</th>
<th>WC3</th>
<th>WS1</th>
<th>WS2</th>
<th>WS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>69.1</td>
<td>68.9</td>
<td>67.7</td>
<td>64.8</td>
<td>60.0</td>
<td>53.7</td>
<td>65.3</td>
<td>64.2</td>
<td>54.1</td>
<td>62.4</td>
<td>65.7</td>
<td>64.5</td>
</tr>
<tr>
<td>13</td>
<td>76.8</td>
<td>77.0</td>
<td>74.9</td>
<td>73.1</td>
<td>66.8</td>
<td>60.2</td>
<td>73.6</td>
<td>70.4</td>
<td>60.7</td>
<td>70.5</td>
<td>72.6</td>
<td>73.2</td>
</tr>
<tr>
<td>16</td>
<td>91.9</td>
<td>91.2</td>
<td>87.2</td>
<td>87.7</td>
<td>80.9</td>
<td>72.9</td>
<td>89.0</td>
<td>81.3</td>
<td>74.6</td>
<td>84.9</td>
<td>86.2</td>
<td>86.9</td>
</tr>
<tr>
<td>20</td>
<td>94.9</td>
<td>95.3</td>
<td>95.7</td>
<td>91.2</td>
<td>87.3</td>
<td>80.4</td>
<td>96.8</td>
<td>95.0</td>
<td>80.4</td>
<td>98.3</td>
<td>90.4</td>
<td>97.7</td>
</tr>
<tr>
<td>25</td>
<td>104.6</td>
<td>104.5</td>
<td>102.2</td>
<td>95.2</td>
<td>87.9</td>
<td>83.3</td>
<td>101.4</td>
<td>96.7</td>
<td>81.3</td>
<td>105.2</td>
<td>96.2</td>
<td>102.9</td>
</tr>
<tr>
<td>32</td>
<td>89.7</td>
<td>88.8</td>
<td>95.1</td>
<td>98.7</td>
<td>88.7</td>
<td>82.6</td>
<td>104.5</td>
<td>102.1</td>
<td>84.7</td>
<td>110.9</td>
<td>105.7</td>
<td>101.1</td>
</tr>
<tr>
<td>40</td>
<td>105.3</td>
<td>105.3</td>
<td>103.8</td>
<td>93.7</td>
<td>89.8</td>
<td>84.3</td>
<td>103.8</td>
<td>102.5</td>
<td>86.7</td>
<td>115.7</td>
<td>111.1</td>
<td>100.8</td>
</tr>
<tr>
<td>50</td>
<td>110.4</td>
<td>108.4</td>
<td>104.1</td>
<td>101.0</td>
<td>90.2</td>
<td>84.2</td>
<td>106.9</td>
<td>106.4</td>
<td>86.9</td>
<td>118.3</td>
<td>118.1</td>
<td>112.3</td>
</tr>
<tr>
<td>63</td>
<td>115.7</td>
<td>115.6</td>
<td>112.8</td>
<td>109.8</td>
<td>97.2</td>
<td>89.7</td>
<td>115.6</td>
<td>110.2</td>
<td>91.9</td>
<td>129.4</td>
<td>124.9</td>
<td>117.5</td>
</tr>
<tr>
<td>79</td>
<td>118.9</td>
<td>118.3</td>
<td>117.5</td>
<td>112.9</td>
<td>100.0</td>
<td>95.1</td>
<td>122.5</td>
<td>117.5</td>
<td>97.4</td>
<td>137.0</td>
<td>132.9</td>
<td>127.4</td>
</tr>
<tr>
<td>100</td>
<td>121.6</td>
<td>116.9</td>
<td>116.8</td>
<td>115.0</td>
<td>101.0</td>
<td>94.2</td>
<td>125.9</td>
<td>116.0</td>
<td>96.9</td>
<td>145.3</td>
<td>138.0</td>
<td>129.8</td>
</tr>
<tr>
<td>126</td>
<td>114.9</td>
<td>120.3</td>
<td>124.1</td>
<td>115.9</td>
<td>99.4</td>
<td>89.8</td>
<td>129.3</td>
<td>126.4</td>
<td>98.5</td>
<td>151.2</td>
<td>147.8</td>
<td>136.1</td>
</tr>
<tr>
<td>159</td>
<td>124.3</td>
<td>124.5</td>
<td>119.1</td>
<td>108.4</td>
<td>85.7</td>
<td>90.2</td>
<td>131.0</td>
<td>126.4</td>
<td>90.9</td>
<td>156.7</td>
<td>149.1</td>
<td>141.7</td>
</tr>
<tr>
<td>200</td>
<td>120.5</td>
<td>112.1</td>
<td>117.5</td>
<td>113.2</td>
<td>88.6</td>
<td>92.8</td>
<td>133.6</td>
<td>127.9</td>
<td>86.5</td>
<td>164.8</td>
<td>156.9</td>
<td>146.3</td>
</tr>
<tr>
<td>251</td>
<td>123.9</td>
<td>122.7</td>
<td>120.7</td>
<td>112.8</td>
<td>77.8</td>
<td>82.3</td>
<td>137.2</td>
<td>128.4</td>
<td>81.8</td>
<td>165.8</td>
<td>161.3</td>
<td>145.5</td>
</tr>
<tr>
<td>316</td>
<td>115.4</td>
<td>110.6</td>
<td>116.0</td>
<td>102.8</td>
<td>78.6</td>
<td>68.1</td>
<td>124.4</td>
<td>129.0</td>
<td>82.7</td>
<td>167.3</td>
<td>160.9</td>
<td>148.2</td>
</tr>
<tr>
<td>398</td>
<td>104.5</td>
<td>103.6</td>
<td>105.1</td>
<td>85.9</td>
<td>59.6</td>
<td>58.7</td>
<td>126.9</td>
<td>116.0</td>
<td>61.3</td>
<td>165.8</td>
<td>159.7</td>
<td>146.2</td>
</tr>
<tr>
<td>501</td>
<td>91.7</td>
<td>92.7</td>
<td>94.2</td>
<td>75.4</td>
<td>36.5</td>
<td>34.6</td>
<td>111.9</td>
<td>109.7</td>
<td>37.3</td>
<td>160.9</td>
<td>156.2</td>
<td>139.4</td>
</tr>
<tr>
<td>631</td>
<td>77.1</td>
<td>84.2</td>
<td>85.4</td>
<td>84.5</td>
<td>18.1</td>
<td>-1.2</td>
<td>108.9</td>
<td>102.6</td>
<td>19.8</td>
<td>158.1</td>
<td>155.6</td>
<td>135.4</td>
</tr>
<tr>
<td>794</td>
<td>72.8</td>
<td>74.0</td>
<td>69.0</td>
<td>47.5</td>
<td>-11.3</td>
<td>-32.2</td>
<td>93.0</td>
<td>79.6</td>
<td>-14.5</td>
<td>147.9</td>
<td>149.1</td>
<td>125.4</td>
</tr>
<tr>
<td>1000</td>
<td>55.7</td>
<td>57.3</td>
<td>54.0</td>
<td>24.5</td>
<td>-45.2</td>
<td>-66.6</td>
<td>77.6</td>
<td>66.0</td>
<td>-56.6</td>
<td>150.1</td>
<td>141.7</td>
<td>113.9</td>
</tr>
<tr>
<td>1259</td>
<td>42.1</td>
<td>41.8</td>
<td>39.2</td>
<td>10.1</td>
<td>-63.7</td>
<td>-104.4</td>
<td>65.8</td>
<td>49.5</td>
<td>-93.0</td>
<td>145.5</td>
<td>134.3</td>
<td>101.4</td>
</tr>
<tr>
<td>1585</td>
<td>25.9</td>
<td>23.8</td>
<td>19.0</td>
<td>-7.5</td>
<td>-90.2</td>
<td>-153.7</td>
<td>48.5</td>
<td>27.1</td>
<td>-140.7</td>
<td>131.5</td>
<td>124.1</td>
<td>91.1</td>
</tr>
<tr>
<td>1995</td>
<td>17.5</td>
<td>13.2</td>
<td>7.0</td>
<td>-16.0</td>
<td>-103.0</td>
<td>-168.2</td>
<td>36.4</td>
<td>14.5</td>
<td>-163.0</td>
<td>133.5</td>
<td>113.5</td>
<td>81.5</td>
</tr>
<tr>
<td>2512</td>
<td>35.5</td>
<td>18.6</td>
<td>9.4</td>
<td>-10.2</td>
<td>-83.6</td>
<td>-142.6</td>
<td>52.2</td>
<td>9.4</td>
<td>-144.3</td>
<td>141.2</td>
<td>125.8</td>
<td>61.1</td>
</tr>
<tr>
<td>3162</td>
<td>63.7</td>
<td>58.0</td>
<td>52.3</td>
<td>38.9</td>
<td>-19.6</td>
<td>-56.8</td>
<td>79.8</td>
<td>49.8</td>
<td>-62.4</td>
<td>144.1</td>
<td>133.9</td>
<td>96.2</td>
</tr>
<tr>
<td>3981</td>
<td>82.8</td>
<td>85.7</td>
<td>81.7</td>
<td>71.7</td>
<td>28.2</td>
<td>5.2</td>
<td>98.4</td>
<td>77.2</td>
<td>0.8</td>
<td>145.3</td>
<td>139.5</td>
<td>112.5</td>
</tr>
<tr>
<td>5012</td>
<td>94.7</td>
<td>103.4</td>
<td>101.9</td>
<td>94.0</td>
<td>60.1</td>
<td>46.8</td>
<td>109.1</td>
<td>95.4</td>
<td>44.0</td>
<td>144.8</td>
<td>142.4</td>
<td>123.2</td>
</tr>
<tr>
<td>6310</td>
<td>103.1</td>
<td>113.4</td>
<td>113.4</td>
<td>108.4</td>
<td>80.0</td>
<td>72.1</td>
<td>116.3</td>
<td>105.6</td>
<td>71.2</td>
<td>142.7</td>
<td>143.4</td>
<td>129.3</td>
</tr>
<tr>
<td>7943</td>
<td>107.4</td>
<td>113.0</td>
<td>116.5</td>
<td>113.7</td>
<td>88.8</td>
<td>83.1</td>
<td>120.3</td>
<td>108.3</td>
<td>84.7</td>
<td>139.1</td>
<td>142.9</td>
<td>131.2</td>
</tr>
</tbody>
</table>
D.1.2. 6’ pile size

Impact Hammering without BMPs
Scenario 18 [P27/48 - 6 ft ø]
Power spectral density levels (dB re 1 µPa²/Hz) for Scenario 18: Impact hammering a 6 ft diameter pile at Pier 27/48 without BMPs.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Receiver Station</th>
<th>CC1</th>
<th>CC2</th>
<th>CC3</th>
<th>CC4</th>
<th>CC5</th>
<th>SC1</th>
<th>WC1</th>
<th>WC2</th>
<th>WC3</th>
<th>WS1</th>
<th>WS2</th>
<th>WS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>95.4</td>
<td>92.4</td>
<td>87.6</td>
<td>82.8</td>
<td>74.2</td>
<td>65.5</td>
<td>80.9</td>
<td>76.1</td>
<td>65.2</td>
<td>70.9</td>
<td>67.0</td>
<td>66.7</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>108.4</td>
<td>106.6</td>
<td>94.3</td>
<td>95.0</td>
<td>83.4</td>
<td>75.0</td>
<td>94.6</td>
<td>88.1</td>
<td>73.9</td>
<td>80.5</td>
<td>77.5</td>
<td>77.7</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>107.0</td>
<td>109.8</td>
<td>108.4</td>
<td>93.7</td>
<td>92.0</td>
<td>82.9</td>
<td>90.5</td>
<td>94.4</td>
<td>84.2</td>
<td>85.3</td>
<td>77.5</td>
<td>76.2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>117.4</td>
<td>113.8</td>
<td>112.8</td>
<td>106.9</td>
<td>91.9</td>
<td>88.9</td>
<td>108.5</td>
<td>98.6</td>
<td>88.4</td>
<td>86.1</td>
<td>85.5</td>
<td>88.4</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>123.2</td>
<td>119.9</td>
<td>112.5</td>
<td>103.8</td>
<td>98.7</td>
<td>85.7</td>
<td>111.1</td>
<td>105.8</td>
<td>88.3</td>
<td>91.8</td>
<td>90.4</td>
<td>92.5</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>125.8</td>
<td>125.6</td>
<td>122.6</td>
<td>115.5</td>
<td>101.9</td>
<td>91.5</td>
<td>110.2</td>
<td>105.4</td>
<td>87.3</td>
<td>103.2</td>
<td>99.7</td>
<td>97.6</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>128.9</td>
<td>129.3</td>
<td>120.9</td>
<td>118.2</td>
<td>94.9</td>
<td>92.7</td>
<td>117.2</td>
<td>111.3</td>
<td>91.3</td>
<td>98.7</td>
<td>96.5</td>
<td>93.6</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>137.3</td>
<td>134.0</td>
<td>130.7</td>
<td>123.8</td>
<td>104.3</td>
<td>93.7</td>
<td>120.6</td>
<td>117.7</td>
<td>96.2</td>
<td>105.9</td>
<td>102.9</td>
<td>102.6</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>141.7</td>
<td>140.9</td>
<td>133.5</td>
<td>120.0</td>
<td>104.5</td>
<td>96.2</td>
<td>132.9</td>
<td>119.2</td>
<td>97.1</td>
<td>113.1</td>
<td>107.2</td>
<td>105.8</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>142.3</td>
<td>145.0</td>
<td>139.3</td>
<td>132.6</td>
<td>116.5</td>
<td>107.8</td>
<td>135.7</td>
<td>130.3</td>
<td>107.8</td>
<td>117.6</td>
<td>114.3</td>
<td>113.1</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>153.7</td>
<td>148.0</td>
<td>147.4</td>
<td>129.6</td>
<td>117.2</td>
<td>109.0</td>
<td>133.2</td>
<td>134.6</td>
<td>109.1</td>
<td>118.8</td>
<td>110.2</td>
<td>113.0</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>153.7</td>
<td>154.6</td>
<td>145.8</td>
<td>137.3</td>
<td>112.2</td>
<td>108.9</td>
<td>144.0</td>
<td>136.2</td>
<td>107.8</td>
<td>120.0</td>
<td>116.0</td>
<td>117.8</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>153.9</td>
<td>152.2</td>
<td>147.0</td>
<td>137.3</td>
<td>113.5</td>
<td>109.1</td>
<td>144.8</td>
<td>135.6</td>
<td>108.0</td>
<td>120.5</td>
<td>118.6</td>
<td>115.5</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>160.4</td>
<td>161.4</td>
<td>154.3</td>
<td>141.5</td>
<td>113.5</td>
<td>107.6</td>
<td>151.6</td>
<td>141.8</td>
<td>108.4</td>
<td>121.0</td>
<td>120.0</td>
<td>120.3</td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>164.4</td>
<td>162.5</td>
<td>149.8</td>
<td>141.0</td>
<td>112.4</td>
<td>107.8</td>
<td>153.6</td>
<td>142.3</td>
<td>108.1</td>
<td>123.6</td>
<td>115.0</td>
<td>109.6</td>
</tr>
<tr>
<td>316</td>
<td></td>
<td>162.5</td>
<td>161.8</td>
<td>151.3</td>
<td>134.3</td>
<td>97.6</td>
<td>93.4</td>
<td>150.7</td>
<td>144.5</td>
<td>93.2</td>
<td>117.0</td>
<td>121.2</td>
<td>117.0</td>
</tr>
<tr>
<td>398</td>
<td></td>
<td>161.5</td>
<td>158.0</td>
<td>153.4</td>
<td>124.2</td>
<td>90.1</td>
<td>82.6</td>
<td>142.7</td>
<td>140.0</td>
<td>84.2</td>
<td>112.4</td>
<td>115.1</td>
<td>109.7</td>
</tr>
<tr>
<td>501</td>
<td></td>
<td>160.6</td>
<td>153.8</td>
<td>150.6</td>
<td>119.9</td>
<td>74.9</td>
<td>76.0</td>
<td>140.7</td>
<td>129.0</td>
<td>72.9</td>
<td>101.9</td>
<td>95.1</td>
<td>92.9</td>
</tr>
<tr>
<td>631</td>
<td></td>
<td>156.3</td>
<td>155.4</td>
<td>148.6</td>
<td>120.4</td>
<td>68.2</td>
<td>70.4</td>
<td>134.9</td>
<td>129.4</td>
<td>67.9</td>
<td>88.8</td>
<td>85.2</td>
<td>80.3</td>
</tr>
<tr>
<td>794</td>
<td></td>
<td>153.2</td>
<td>151.1</td>
<td>141.6</td>
<td>112.7</td>
<td>56.0</td>
<td>59.2</td>
<td>131.7</td>
<td>125.0</td>
<td>57.9</td>
<td>75.8</td>
<td>70.9</td>
<td>64.2</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>153.0</td>
<td>152.9</td>
<td>140.9</td>
<td>102.2</td>
<td>38.0</td>
<td>42.1</td>
<td>131.0</td>
<td>119.1</td>
<td>42.5</td>
<td>63.9</td>
<td>58.9</td>
<td>50.1</td>
</tr>
<tr>
<td>1259</td>
<td></td>
<td>151.9</td>
<td>147.6</td>
<td>142.3</td>
<td>103.8</td>
<td>39.0</td>
<td>59.0</td>
<td>135.0</td>
<td>126.5</td>
<td>49.1</td>
<td>55.8</td>
<td>37.7</td>
<td>34.3</td>
</tr>
<tr>
<td>1585</td>
<td></td>
<td>147.4</td>
<td>146.2</td>
<td>142.4</td>
<td>111.1</td>
<td>46.0</td>
<td>81.2</td>
<td>137.2</td>
<td>132.8</td>
<td>75.9</td>
<td>47.7</td>
<td>32.8</td>
<td>30.3</td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td>151.5</td>
<td>151.4</td>
<td>144.3</td>
<td>115.6</td>
<td>46.1</td>
<td>99.7</td>
<td>144.3</td>
<td>140.4</td>
<td>91.5</td>
<td>54.5</td>
<td>36.6</td>
<td>33.3</td>
</tr>
<tr>
<td>2512</td>
<td></td>
<td>154.8</td>
<td>155.7</td>
<td>150.0</td>
<td>129.8</td>
<td>85.6</td>
<td>117.8</td>
<td>149.8</td>
<td>148.2</td>
<td>78.7</td>
<td>44.6</td>
<td>54.0</td>
<td>54.0</td>
</tr>
<tr>
<td>3162</td>
<td></td>
<td>154.7</td>
<td>156.3</td>
<td>151.3</td>
<td>137.1</td>
<td>105.5</td>
<td>128.6</td>
<td>149.6</td>
<td>150.0</td>
<td>125.8</td>
<td>100.5</td>
<td>77.8</td>
<td>85.0</td>
</tr>
<tr>
<td>3981</td>
<td></td>
<td>152.6</td>
<td>155.0</td>
<td>151.1</td>
<td>140.5</td>
<td>118.0</td>
<td>134.1</td>
<td>144.8</td>
<td>149.6</td>
<td>132.6</td>
<td>114.9</td>
<td>99.4</td>
<td>106.4</td>
</tr>
<tr>
<td>5012</td>
<td></td>
<td>151.7</td>
<td>152.4</td>
<td>150.1</td>
<td>141.6</td>
<td>124.8</td>
<td>136.3</td>
<td>137.3</td>
<td>145.4</td>
<td>135.7</td>
<td>120.7</td>
<td>110.4</td>
<td>118.5</td>
</tr>
<tr>
<td>6310</td>
<td></td>
<td>149.6</td>
<td>150.4</td>
<td>148.3</td>
<td>141.0</td>
<td>129.0</td>
<td>136.6</td>
<td>140.5</td>
<td>134.9</td>
<td>135.9</td>
<td>111.0</td>
<td>110.4</td>
<td>123.1</td>
</tr>
<tr>
<td>7943</td>
<td></td>
<td>149.2</td>
<td>147.0</td>
<td>145.1</td>
<td>138.5</td>
<td>128.0</td>
<td>132.3</td>
<td>139.0</td>
<td>137.2</td>
<td>132.2</td>
<td>123.3</td>
<td>115.5</td>
<td>120.2</td>
</tr>
</tbody>
</table>
D.1.3. 8' pile size

Impact Hammering without BMPs
Scenario 19 [P20/38 - 8 ft ø]

Power Spectral Density Level (dB re 1 μPa²/Hz)

Frequency (Hz)

Receiver Stations

- CC1
- CC2
- CC3
- CC4
- CC5
- SC1
- WC1
- WC2
- WC3
- WS1
- WS2
- WS3
- WS4
- WS5

Version 1.0
Power spectral density levels (dB re 1 µPa^2/Hz) for Scenario 19: Impact hammering an 8 ft diameter pile at Pier 20/38 without BMPs.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>CC1</th>
<th>CC2</th>
<th>CC3</th>
<th>CC4</th>
<th>CC5</th>
<th>SC1</th>
<th>WC1</th>
<th>WC2</th>
<th>WC3</th>
<th>WS1</th>
<th>WS2</th>
<th>WS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>109.3</td>
<td>109.1</td>
<td>111.4</td>
<td>106.5</td>
<td>96.3</td>
<td>90.4</td>
<td>116.0</td>
<td>107.5</td>
<td>91.6</td>
<td>101.7</td>
<td>97.4</td>
<td>95.8</td>
</tr>
<tr>
<td>13</td>
<td>113.9</td>
<td>112.5</td>
<td>109.6</td>
<td>110.1</td>
<td>97.0</td>
<td>91.2</td>
<td>121.0</td>
<td>111.9</td>
<td>92.9</td>
<td>101.4</td>
<td>96.1</td>
<td>98.9</td>
</tr>
<tr>
<td>16</td>
<td>114.9</td>
<td>115.4</td>
<td>118.3</td>
<td>107.0</td>
<td>94.7</td>
<td>92.7</td>
<td>123.1</td>
<td>110.7</td>
<td>94.5</td>
<td>107.5</td>
<td>102.7</td>
<td>91.2</td>
</tr>
<tr>
<td>20</td>
<td>123.6</td>
<td>122.0</td>
<td>118.6</td>
<td>121.2</td>
<td>96.4</td>
<td>99.2</td>
<td>131.8</td>
<td>122.2</td>
<td>99.6</td>
<td>110.6</td>
<td>105.1</td>
<td>110.8</td>
</tr>
<tr>
<td>25</td>
<td>129.5</td>
<td>129.0</td>
<td>122.7</td>
<td>117.9</td>
<td>103.3</td>
<td>106.1</td>
<td>137.0</td>
<td>127.1</td>
<td>102.5</td>
<td>120.1</td>
<td>115.3</td>
<td>109.0</td>
</tr>
<tr>
<td>32</td>
<td>129.2</td>
<td>127.5</td>
<td>133.3</td>
<td>127.5</td>
<td>110.2</td>
<td>100.6</td>
<td>137.0</td>
<td>121.6</td>
<td>101.2</td>
<td>115.3</td>
<td>115.7</td>
<td>112.7</td>
</tr>
<tr>
<td>40</td>
<td>136.1</td>
<td>136.7</td>
<td>140.9</td>
<td>127.5</td>
<td>115.6</td>
<td>106.3</td>
<td>148.3</td>
<td>129.5</td>
<td>111.3</td>
<td>129.6</td>
<td>127.4</td>
<td>120.7</td>
</tr>
<tr>
<td>50</td>
<td>141.3</td>
<td>139.3</td>
<td>144.8</td>
<td>139.3</td>
<td>117.6</td>
<td>110.8</td>
<td>157.3</td>
<td>147.7</td>
<td>112.5</td>
<td>137.6</td>
<td>127.3</td>
<td>130.4</td>
</tr>
<tr>
<td>63</td>
<td>145.1</td>
<td>143.5</td>
<td>148.5</td>
<td>135.1</td>
<td>117.7</td>
<td>114.2</td>
<td>157.5</td>
<td>146.9</td>
<td>116.9</td>
<td>138.7</td>
<td>136.4</td>
<td>132.7</td>
</tr>
<tr>
<td>79</td>
<td>157.0</td>
<td>158.1</td>
<td>152.5</td>
<td>141.8</td>
<td>124.8</td>
<td>115.9</td>
<td>172.0</td>
<td>153.9</td>
<td>119.2</td>
<td>148.0</td>
<td>144.6</td>
<td>139.5</td>
</tr>
<tr>
<td>100</td>
<td>159.6</td>
<td>158.0</td>
<td>160.2</td>
<td>150.6</td>
<td>131.0</td>
<td>120.3</td>
<td>180.8</td>
<td>162.4</td>
<td>120.9</td>
<td>158.6</td>
<td>146.9</td>
<td>148.3</td>
</tr>
<tr>
<td>126</td>
<td>167.6</td>
<td>167.8</td>
<td>157.9</td>
<td>150.3</td>
<td>131.9</td>
<td>122.1</td>
<td>180.8</td>
<td>168.1</td>
<td>124.4</td>
<td>157.4</td>
<td>156.1</td>
<td>150.5</td>
</tr>
<tr>
<td>159</td>
<td>164.9</td>
<td>165.9</td>
<td>166.5</td>
<td>151.4</td>
<td>135.2</td>
<td>120.4</td>
<td>185.5</td>
<td>170.9</td>
<td>127.0</td>
<td>160.6</td>
<td>156.3</td>
<td>152.0</td>
</tr>
<tr>
<td>200</td>
<td>166.8</td>
<td>165.3</td>
<td>160.4</td>
<td>147.4</td>
<td>127.0</td>
<td>112.5</td>
<td>182.8</td>
<td>164.8</td>
<td>119.5</td>
<td>161.6</td>
<td>150.9</td>
<td>151.6</td>
</tr>
<tr>
<td>251</td>
<td>165.2</td>
<td>163.9</td>
<td>159.6</td>
<td>147.0</td>
<td>115.7</td>
<td>104.6</td>
<td>184.5</td>
<td>167.6</td>
<td>113.3</td>
<td>160.0</td>
<td>159.9</td>
<td>148.8</td>
</tr>
<tr>
<td>316</td>
<td>164.0</td>
<td>162.6</td>
<td>153.7</td>
<td>139.8</td>
<td>101.7</td>
<td>101.0</td>
<td>181.9</td>
<td>166.6</td>
<td>102.3</td>
<td>162.7</td>
<td>153.5</td>
<td>154.0</td>
</tr>
<tr>
<td>398</td>
<td>157.7</td>
<td>151.4</td>
<td>147.2</td>
<td>132.2</td>
<td>93.8</td>
<td>85.1</td>
<td>175.5</td>
<td>157.7</td>
<td>85.4</td>
<td>152.3</td>
<td>152.3</td>
<td>143.2</td>
</tr>
<tr>
<td>501</td>
<td>151.2</td>
<td>151.5</td>
<td>147.7</td>
<td>124.2</td>
<td>84.8</td>
<td>61.7</td>
<td>169.9</td>
<td>148.0</td>
<td>70.7</td>
<td>146.9</td>
<td>149.5</td>
<td>136.4</td>
</tr>
<tr>
<td>631</td>
<td>152.2</td>
<td>149.6</td>
<td>140.8</td>
<td>120.8</td>
<td>73.1</td>
<td>39.2</td>
<td>169.0</td>
<td>145.9</td>
<td>45.7</td>
<td>140.7</td>
<td>138.0</td>
<td>130.0</td>
</tr>
<tr>
<td>794</td>
<td>147.2</td>
<td>144.4</td>
<td>137.7</td>
<td>112.0</td>
<td>59.7</td>
<td>8.1</td>
<td>162.3</td>
<td>140.6</td>
<td>19.0</td>
<td>126.0</td>
<td>123.7</td>
<td>117.0</td>
</tr>
<tr>
<td>1000</td>
<td>139.5</td>
<td>139.7</td>
<td>132.9</td>
<td>105.4</td>
<td>44.5</td>
<td>-21.0</td>
<td>157.9</td>
<td>135.6</td>
<td>-5.5</td>
<td>113.9</td>
<td>111.5</td>
<td>105.3</td>
</tr>
<tr>
<td>1259</td>
<td>135.1</td>
<td>130.5</td>
<td>124.9</td>
<td>105.2</td>
<td>48.5</td>
<td>-43.8</td>
<td>159.0</td>
<td>127.3</td>
<td>-26.1</td>
<td>100.9</td>
<td>95.2</td>
<td>88.0</td>
</tr>
<tr>
<td>1585</td>
<td>144.5</td>
<td>141.2</td>
<td>133.7</td>
<td>110.9</td>
<td>69.1</td>
<td>-57.9</td>
<td>161.9</td>
<td>122.2</td>
<td>-34.5</td>
<td>95.8</td>
<td>80.6</td>
<td>69.4</td>
</tr>
<tr>
<td>1995</td>
<td>148.0</td>
<td>145.8</td>
<td>139.2</td>
<td>119.6</td>
<td>87.0</td>
<td>-44.9</td>
<td>163.1</td>
<td>126.9</td>
<td>-15.7</td>
<td>91.1</td>
<td>78.9</td>
<td>56.4</td>
</tr>
<tr>
<td>2512</td>
<td>151.6</td>
<td>149.5</td>
<td>143.3</td>
<td>129.2</td>
<td>108.0</td>
<td>27.1</td>
<td>163.9</td>
<td>136.0</td>
<td>44.5</td>
<td>100.1</td>
<td>80.6</td>
<td>53.4</td>
</tr>
<tr>
<td>3162</td>
<td>152.6</td>
<td>150.4</td>
<td>143.4</td>
<td>134.6</td>
<td>120.2</td>
<td>67.6</td>
<td>163.5</td>
<td>139.9</td>
<td>79.1</td>
<td>115.4</td>
<td>103.4</td>
<td>85.7</td>
</tr>
<tr>
<td>3981</td>
<td>152.2</td>
<td>150.5</td>
<td>146.3</td>
<td>139.5</td>
<td>128.3</td>
<td>95.2</td>
<td>163.3</td>
<td>142.3</td>
<td>102.4</td>
<td>126.8</td>
<td>120.0</td>
<td>107.3</td>
</tr>
<tr>
<td>5012</td>
<td>151.2</td>
<td>149.3</td>
<td>148.5</td>
<td>140.5</td>
<td>132.4</td>
<td>112.4</td>
<td>161.1</td>
<td>142.7</td>
<td>117.1</td>
<td>133.6</td>
<td>130.9</td>
<td>121.9</td>
</tr>
<tr>
<td>6310</td>
<td>149.7</td>
<td>149.8</td>
<td>148.6</td>
<td>140.1</td>
<td>134.5</td>
<td>122.7</td>
<td>159.9</td>
<td>142.9</td>
<td>126.2</td>
<td>138.0</td>
<td>137.6</td>
<td>131.3</td>
</tr>
<tr>
<td>7943</td>
<td>149.1</td>
<td>148.6</td>
<td>144.8</td>
<td>140.3</td>
<td>133.7</td>
<td>125.4</td>
<td>158.1</td>
<td>141.3</td>
<td>128.4</td>
<td>138.9</td>
<td>139.6</td>
<td>135.1</td>
</tr>
</tbody>
</table>
D.1.4. 10’ pile size

Impact Hammering without BMPs
Scenario 20 [P24/44 - 10 ft ø]
Power spectral density levels (dB re 1 µPa²/Hz) for Scenario 20: impact hammering a 10 ft diameter pile at Pier 24/44 without BMPs.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Receiver Station</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC1</td>
</tr>
<tr>
<td>10</td>
<td>131.2</td>
</tr>
<tr>
<td>13</td>
<td>133.7</td>
</tr>
<tr>
<td>16</td>
<td>141.9</td>
</tr>
<tr>
<td>20</td>
<td>146.4</td>
</tr>
<tr>
<td>25</td>
<td>150.6</td>
</tr>
<tr>
<td>32</td>
<td>157.9</td>
</tr>
<tr>
<td>40</td>
<td>167.7</td>
</tr>
<tr>
<td>50</td>
<td>169.3</td>
</tr>
<tr>
<td>63</td>
<td>173.3</td>
</tr>
<tr>
<td>79</td>
<td>179.4</td>
</tr>
<tr>
<td>100</td>
<td>186.6</td>
</tr>
<tr>
<td>126</td>
<td>190.6</td>
</tr>
<tr>
<td>159</td>
<td>194.1</td>
</tr>
<tr>
<td>200</td>
<td>191.1</td>
</tr>
<tr>
<td>251</td>
<td>190.2</td>
</tr>
<tr>
<td>316</td>
<td>185.2</td>
</tr>
<tr>
<td>398</td>
<td>185.5</td>
</tr>
<tr>
<td>501</td>
<td>185.4</td>
</tr>
<tr>
<td>631</td>
<td>185.4</td>
</tr>
<tr>
<td>794</td>
<td>181.8</td>
</tr>
<tr>
<td>1000</td>
<td>182.1</td>
</tr>
<tr>
<td>1259</td>
<td>179.4</td>
</tr>
<tr>
<td>1585</td>
<td>178.4</td>
</tr>
<tr>
<td>1995</td>
<td>175.9</td>
</tr>
<tr>
<td>2512</td>
<td>173.2</td>
</tr>
<tr>
<td>3162</td>
<td>168.5</td>
</tr>
<tr>
<td>3981</td>
<td>164.1</td>
</tr>
<tr>
<td>5012</td>
<td>164.6</td>
</tr>
<tr>
<td>6310</td>
<td>165.1</td>
</tr>
<tr>
<td>7943</td>
<td>164.1</td>
</tr>
</tbody>
</table>
D.2. Single and Dual Level Bridge: BMPs Applied

D.2.1. 4’ pile size
Power spectral density levels (dB re 1 μPa²/Hz) for Scenario 21: Impact hammering a 4 ft diameter pile at Pier 12/23 with BMPs.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>CC1</th>
<th>CC2</th>
<th>CC3</th>
<th>CC4</th>
<th>CC5</th>
<th>SC1</th>
<th>WC1</th>
<th>WC2</th>
<th>WC3</th>
<th>WS1</th>
<th>WS2</th>
<th>WS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>69.1</td>
<td>69.3</td>
<td>68.6</td>
<td>66.2</td>
<td>60.0</td>
<td>53.7</td>
<td>65.5</td>
<td>64.2</td>
<td>54.1</td>
<td>62.4</td>
<td>65.7</td>
<td>64.5</td>
</tr>
<tr>
<td>13</td>
<td>76.8</td>
<td>77.3</td>
<td>75.8</td>
<td>74.5</td>
<td>66.8</td>
<td>60.2</td>
<td>73.9</td>
<td>70.4</td>
<td>60.7</td>
<td>70.5</td>
<td>72.6</td>
<td>73.2</td>
</tr>
<tr>
<td>16</td>
<td>91.9</td>
<td>91.6</td>
<td>88.0</td>
<td>89.0</td>
<td>80.9</td>
<td>72.9</td>
<td>89.1</td>
<td>81.3</td>
<td>74.6</td>
<td>84.9</td>
<td>86.2</td>
<td>86.9</td>
</tr>
<tr>
<td>20</td>
<td>94.9</td>
<td>95.6</td>
<td>96.5</td>
<td>92.5</td>
<td>87.3</td>
<td>80.4</td>
<td>96.9</td>
<td>95.0</td>
<td>80.4</td>
<td>98.3</td>
<td>90.4</td>
<td>97.7</td>
</tr>
<tr>
<td>25</td>
<td>104.6</td>
<td>104.8</td>
<td>103.0</td>
<td>96.4</td>
<td>87.9</td>
<td>83.3</td>
<td>101.6</td>
<td>96.7</td>
<td>81.3</td>
<td>105.2</td>
<td>96.2</td>
<td>102.9</td>
</tr>
<tr>
<td>32</td>
<td>89.7</td>
<td>88.9</td>
<td>95.7</td>
<td>100.0</td>
<td>88.7</td>
<td>82.6</td>
<td>104.7</td>
<td>102.1</td>
<td>84.7</td>
<td>110.9</td>
<td>105.7</td>
<td>101.1</td>
</tr>
<tr>
<td>40</td>
<td>105.3</td>
<td>105.6</td>
<td>104.5</td>
<td>95.0</td>
<td>89.8</td>
<td>84.3</td>
<td>104.0</td>
<td>102.5</td>
<td>86.7</td>
<td>115.7</td>
<td>111.1</td>
<td>100.8</td>
</tr>
<tr>
<td>50</td>
<td>110.4</td>
<td>108.6</td>
<td>104.8</td>
<td>102.1</td>
<td>90.2</td>
<td>84.2</td>
<td>107.2</td>
<td>106.4</td>
<td>86.9</td>
<td>118.3</td>
<td>118.1</td>
<td>112.3</td>
</tr>
<tr>
<td>63</td>
<td>114.8</td>
<td>114.9</td>
<td>112.6</td>
<td>109.8</td>
<td>96.3</td>
<td>88.8</td>
<td>115.0</td>
<td>109.3</td>
<td>91.0</td>
<td>128.5</td>
<td>124.0</td>
<td>116.6</td>
</tr>
<tr>
<td>79</td>
<td>118.4</td>
<td>118.0</td>
<td>117.5</td>
<td>113.3</td>
<td>99.5</td>
<td>94.6</td>
<td>122.2</td>
<td>117.0</td>
<td>96.9</td>
<td>136.5</td>
<td>132.4</td>
<td>126.9</td>
</tr>
<tr>
<td>100</td>
<td>115.9</td>
<td>111.6</td>
<td>111.7</td>
<td>110.1</td>
<td>95.3</td>
<td>88.5</td>
<td>120.2</td>
<td>110.3</td>
<td>91.2</td>
<td>139.6</td>
<td>132.3</td>
<td>124.1</td>
</tr>
<tr>
<td>126</td>
<td>106.1</td>
<td>111.8</td>
<td>115.4</td>
<td>107.5</td>
<td>90.6</td>
<td>81.0</td>
<td>120.7</td>
<td>117.6</td>
<td>89.8</td>
<td>142.4</td>
<td>139.0</td>
<td>127.3</td>
</tr>
<tr>
<td>159</td>
<td>114.5</td>
<td>114.6</td>
<td>109.7</td>
<td>98.6</td>
<td>75.9</td>
<td>80.4</td>
<td>121.4</td>
<td>116.7</td>
<td>81.2</td>
<td>146.9</td>
<td>139.4</td>
<td>132.0</td>
</tr>
<tr>
<td>200</td>
<td>114.9</td>
<td>107.9</td>
<td>112.6</td>
<td>106.6</td>
<td>83.1</td>
<td>87.2</td>
<td>128.2</td>
<td>122.4</td>
<td>81.0</td>
<td>159.3</td>
<td>151.3</td>
<td>140.8</td>
</tr>
<tr>
<td>251</td>
<td>115.1</td>
<td>114.2</td>
<td>110.5</td>
<td>103.2</td>
<td>69.0</td>
<td>73.5</td>
<td>128.3</td>
<td>119.6</td>
<td>73.0</td>
<td>157.0</td>
<td>152.5</td>
<td>136.7</td>
</tr>
<tr>
<td>316</td>
<td>102.6</td>
<td>99.1</td>
<td>102.3</td>
<td>86.3</td>
<td>65.8</td>
<td>55.3</td>
<td>111.7</td>
<td>116.2</td>
<td>69.9</td>
<td>154.6</td>
<td>148.1</td>
<td>135.4</td>
</tr>
<tr>
<td>398</td>
<td>92.4</td>
<td>92.8</td>
<td>91.3</td>
<td>70.3</td>
<td>47.5</td>
<td>46.6</td>
<td>114.4</td>
<td>103.9</td>
<td>49.1</td>
<td>153.7</td>
<td>147.6</td>
<td>134.1</td>
</tr>
<tr>
<td>501</td>
<td>78.3</td>
<td>79.9</td>
<td>80.5</td>
<td>61.4</td>
<td>23.1</td>
<td>21.2</td>
<td>99.4</td>
<td>96.3</td>
<td>24.1</td>
<td>147.5</td>
<td>142.8</td>
<td>126.0</td>
</tr>
<tr>
<td>631</td>
<td>63.2</td>
<td>69.7</td>
<td>71.8</td>
<td>47.9</td>
<td>4.2</td>
<td>-15.1</td>
<td>94.9</td>
<td>88.7</td>
<td>5.7</td>
<td>144.2</td>
<td>141.7</td>
<td>121.5</td>
</tr>
<tr>
<td>794</td>
<td>59.3</td>
<td>60.3</td>
<td>54.7</td>
<td>33.1</td>
<td>-24.8</td>
<td>-45.7</td>
<td>80.8</td>
<td>66.1</td>
<td>-27.9</td>
<td>134.4</td>
<td>135.6</td>
<td>111.9</td>
</tr>
<tr>
<td>1000</td>
<td>42.9</td>
<td>43.8</td>
<td>40.6</td>
<td>9.0</td>
<td>-58.0</td>
<td>-79.4</td>
<td>65.4</td>
<td>53.2</td>
<td>-69.0</td>
<td>137.3</td>
<td>128.9</td>
<td>101.1</td>
</tr>
<tr>
<td>1259</td>
<td>30.9</td>
<td>29.6</td>
<td>25.9</td>
<td>-3.6</td>
<td>-74.9</td>
<td>-115.6</td>
<td>54.4</td>
<td>38.3</td>
<td>-105.2</td>
<td>134.3</td>
<td>123.1</td>
<td>90.2</td>
</tr>
<tr>
<td>1585</td>
<td>14.6</td>
<td>10.8</td>
<td>4.4</td>
<td>-22.5</td>
<td>-101.5</td>
<td>-165.0</td>
<td>36.8</td>
<td>15.8</td>
<td>-152.7</td>
<td>120.2</td>
<td>112.8</td>
<td>79.8</td>
</tr>
<tr>
<td>1995</td>
<td>4.6</td>
<td>-2.2</td>
<td>-10.4</td>
<td>-33.4</td>
<td>-115.9</td>
<td>-181.1</td>
<td>22.6</td>
<td>1.6</td>
<td>-176.3</td>
<td>120.6</td>
<td>100.6</td>
<td>68.6</td>
</tr>
<tr>
<td>2512</td>
<td>24.9</td>
<td>47.7</td>
<td>-6.8</td>
<td>-26.1</td>
<td>-94.2</td>
<td>-153.2</td>
<td>40.2</td>
<td>-1.2</td>
<td>-156.0</td>
<td>130.6</td>
<td>115.2</td>
<td>50.5</td>
</tr>
<tr>
<td>3162</td>
<td>53.8</td>
<td>44.3</td>
<td>35.6</td>
<td>23.1</td>
<td>-29.5</td>
<td>-66.7</td>
<td>67.7</td>
<td>39.9</td>
<td>-73.9</td>
<td>134.2</td>
<td>124.0</td>
<td>86.3</td>
</tr>
<tr>
<td>3981</td>
<td>72.6</td>
<td>71.0</td>
<td>64.0</td>
<td>55.1</td>
<td>18.0</td>
<td>-5.0</td>
<td>85.0</td>
<td>67.0</td>
<td>-11.6</td>
<td>135.1</td>
<td>129.3</td>
<td>102.3</td>
</tr>
<tr>
<td>5012</td>
<td>82.0</td>
<td>85.6</td>
<td>81.1</td>
<td>75.1</td>
<td>47.4</td>
<td>34.1</td>
<td>92.6</td>
<td>82.7</td>
<td>28.4</td>
<td>132.1</td>
<td>129.7</td>
<td>110.5</td>
</tr>
<tr>
<td>6310</td>
<td>90.2</td>
<td>94.9</td>
<td>91.6</td>
<td>89.1</td>
<td>67.1</td>
<td>59.2</td>
<td>100.5</td>
<td>92.7</td>
<td>54.9</td>
<td>129.8</td>
<td>130.5</td>
<td>116.4</td>
</tr>
<tr>
<td>7943</td>
<td>94.5</td>
<td>93.7</td>
<td>93.7</td>
<td>95.0</td>
<td>75.9</td>
<td>70.2</td>
<td>104.2</td>
<td>95.4</td>
<td>67.7</td>
<td>126.2</td>
<td>130.0</td>
<td>118.3</td>
</tr>
</tbody>
</table>
D.2.2. 6’ pile size
Power spectral density levels (dB re 1 µPa²/Hz) for Scenario 22: Impact hammering a 6 ft diameter pile at Pier 27/48 with BMPs.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Receiver Station</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC1</td>
</tr>
<tr>
<td>10</td>
<td>95.4</td>
</tr>
<tr>
<td>13</td>
<td>108.4</td>
</tr>
<tr>
<td>16</td>
<td>107.0</td>
</tr>
<tr>
<td>20</td>
<td>117.4</td>
</tr>
<tr>
<td>25</td>
<td>123.2</td>
</tr>
<tr>
<td>32</td>
<td>125.8</td>
</tr>
<tr>
<td>40</td>
<td>128.9</td>
</tr>
<tr>
<td>50</td>
<td>137.3</td>
</tr>
<tr>
<td>63</td>
<td>140.9</td>
</tr>
<tr>
<td>79</td>
<td>141.7</td>
</tr>
<tr>
<td>100</td>
<td>148.1</td>
</tr>
<tr>
<td>126</td>
<td>144.8</td>
</tr>
<tr>
<td>159</td>
<td>144.1</td>
</tr>
<tr>
<td>200</td>
<td>154.8</td>
</tr>
<tr>
<td>251</td>
<td>156.6</td>
</tr>
<tr>
<td>316</td>
<td>149.6</td>
</tr>
<tr>
<td>398</td>
<td>149.3</td>
</tr>
<tr>
<td>501</td>
<td>147.2</td>
</tr>
<tr>
<td>631</td>
<td>142.8</td>
</tr>
<tr>
<td>794</td>
<td>139.3</td>
</tr>
<tr>
<td>1000</td>
<td>139.5</td>
</tr>
<tr>
<td>1259</td>
<td>139.8</td>
</tr>
<tr>
<td>1585</td>
<td>135.0</td>
</tr>
<tr>
<td>1995</td>
<td>136.9</td>
</tr>
<tr>
<td>2512</td>
<td>141.9</td>
</tr>
<tr>
<td>3162</td>
<td>141.8</td>
</tr>
<tr>
<td>3981</td>
<td>138.7</td>
</tr>
<tr>
<td>5012</td>
<td>134.7</td>
</tr>
<tr>
<td>6310</td>
<td>131.7</td>
</tr>
<tr>
<td>7943</td>
<td>132.8</td>
</tr>
</tbody>
</table>
D.2.3. 8’ pile size

Impact Hammering with BMPs
Scenario 23 [P20/38 - 8 ft ø]
Power spectral density levels (dB re 1 \(\mu\)Pa\(^2\)/Hz) for Scenario 23: Impact hammering an 8 ft diameter pile at Pier 20/38 with BMPs.

<table>
<thead>
<tr>
<th>Receiver Station</th>
<th>CC1</th>
<th>CC2</th>
<th>CC3</th>
<th>CC4</th>
<th>CC5</th>
<th>SC1</th>
<th>WC1</th>
<th>WC2</th>
<th>WC3</th>
<th>WS1</th>
<th>WS2</th>
<th>WS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>109.3</td>
<td>109.1</td>
<td>112.0</td>
<td>107.3</td>
<td>99.3</td>
<td>92.5</td>
<td>116.7</td>
<td>107.5</td>
<td>93.2</td>
<td>101.7</td>
<td>97.4</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>113.9</td>
<td>112.5</td>
<td>110.3</td>
<td>110.8</td>
<td>100.0</td>
<td>93.4</td>
<td>121.6</td>
<td>111.9</td>
<td>94.5</td>
<td>101.4</td>
<td>96.1</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>114.9</td>
<td>115.4</td>
<td>118.9</td>
<td>107.8</td>
<td>97.7</td>
<td>94.8</td>
<td>123.8</td>
<td>110.7</td>
<td>96.1</td>
<td>107.5</td>
<td>102.7</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>123.6</td>
<td>122.0</td>
<td>119.2</td>
<td>121.9</td>
<td>99.3</td>
<td>101.3</td>
<td>132.5</td>
<td>122.2</td>
<td>101.1</td>
<td>110.6</td>
<td>105.1</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>129.5</td>
<td>129.0</td>
<td>123.2</td>
<td>118.6</td>
<td>106.1</td>
<td>108.2</td>
<td>137.7</td>
<td>127.1</td>
<td>103.9</td>
<td>120.1</td>
<td>115.3</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>129.2</td>
<td>127.5</td>
<td>133.8</td>
<td>128.1</td>
<td>113.1</td>
<td>102.6</td>
<td>137.6</td>
<td>121.6</td>
<td>102.7</td>
<td>115.3</td>
<td>115.7</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>136.1</td>
<td>136.7</td>
<td>141.3</td>
<td>128.2</td>
<td>118.3</td>
<td>108.3</td>
<td>148.8</td>
<td>129.5</td>
<td>112.9</td>
<td>129.6</td>
<td>127.4</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>141.3</td>
<td>139.3</td>
<td>144.8</td>
<td>139.6</td>
<td>119.8</td>
<td>112.9</td>
<td>157.8</td>
<td>147.7</td>
<td>113.9</td>
<td>137.6</td>
<td>127.3</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>144.2</td>
<td>142.6</td>
<td>147.7</td>
<td>134.7</td>
<td>119.6</td>
<td>115.4</td>
<td>157.0</td>
<td>146.0</td>
<td>117.5</td>
<td>137.8</td>
<td>135.5</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>156.5</td>
<td>157.6</td>
<td>151.7</td>
<td>141.8</td>
<td>126.8</td>
<td>117.5</td>
<td>171.7</td>
<td>153.4</td>
<td>120.2</td>
<td>147.4</td>
<td>144.1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>154.0</td>
<td>152.4</td>
<td>154.6</td>
<td>145.2</td>
<td>127.5</td>
<td>116.6</td>
<td>175.3</td>
<td>156.8</td>
<td>116.9</td>
<td>153.0</td>
<td>141.3</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>158.8</td>
<td>159.0</td>
<td>148.6</td>
<td>141.7</td>
<td>124.9</td>
<td>115.3</td>
<td>172.2</td>
<td>159.3</td>
<td>117.2</td>
<td>148.6</td>
<td>147.2</td>
</tr>
<tr>
<td></td>
<td>159</td>
<td>155.2</td>
<td>156.1</td>
<td>156.6</td>
<td>141.9</td>
<td>126.6</td>
<td>112.4</td>
<td>175.9</td>
<td>161.1</td>
<td>118.7</td>
<td>150.9</td>
<td>146.6</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>161.3</td>
<td>159.7</td>
<td>155.1</td>
<td>141.1</td>
<td>122.4</td>
<td>108.5</td>
<td>177.1</td>
<td>159.2</td>
<td>115.3</td>
<td>156.0</td>
<td>145.4</td>
</tr>
<tr>
<td></td>
<td>251</td>
<td>156.4</td>
<td>155.1</td>
<td>151.8</td>
<td>137.7</td>
<td>106.6</td>
<td>97.8</td>
<td>176.1</td>
<td>158.8</td>
<td>105.4</td>
<td>151.2</td>
<td>151.1</td>
</tr>
<tr>
<td></td>
<td>316</td>
<td>151.3</td>
<td>149.9</td>
<td>142.5</td>
<td>128.2</td>
<td>87.1</td>
<td>88.8</td>
<td>167.5</td>
<td>153.9</td>
<td>89.9</td>
<td>150.0</td>
<td>140.8</td>
</tr>
<tr>
<td></td>
<td>398</td>
<td>145.6</td>
<td>139.3</td>
<td>139.1</td>
<td>119.7</td>
<td>80.4</td>
<td>73.1</td>
<td>160.1</td>
<td>145.6</td>
<td>74.6</td>
<td>140.2</td>
<td>140.2</td>
</tr>
<tr>
<td></td>
<td>501</td>
<td>137.9</td>
<td>138.2</td>
<td>134.2</td>
<td>110.4</td>
<td>70.5</td>
<td>47.8</td>
<td>159.7</td>
<td>134.7</td>
<td>57.7</td>
<td>133.6</td>
<td>136.2</td>
</tr>
<tr>
<td></td>
<td>631</td>
<td>138.3</td>
<td>135.7</td>
<td>125.7</td>
<td>106.6</td>
<td>57.9</td>
<td>26.1</td>
<td>159.2</td>
<td>132.0</td>
<td>31.6</td>
<td>126.8</td>
<td>124.1</td>
</tr>
<tr>
<td></td>
<td>794</td>
<td>133.7</td>
<td>130.9</td>
<td>122.7</td>
<td>97.9</td>
<td>45.5</td>
<td>-4.5</td>
<td>147.9</td>
<td>127.1</td>
<td>6.6</td>
<td>112.5</td>
<td>110.2</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>126.7</td>
<td>126.9</td>
<td>118.5</td>
<td>91.7</td>
<td>30.9</td>
<td>-36.0</td>
<td>147.3</td>
<td>122.8</td>
<td>-18.5</td>
<td>101.1</td>
<td>98.7</td>
</tr>
<tr>
<td></td>
<td>1259</td>
<td>124.0</td>
<td>119.4</td>
<td>111.4</td>
<td>92.8</td>
<td>35.1</td>
<td>-57.0</td>
<td>147.1</td>
<td>116.2</td>
<td>-37.8</td>
<td>89.8</td>
<td>84.1</td>
</tr>
<tr>
<td></td>
<td>1585</td>
<td>133.2</td>
<td>129.9</td>
<td>118.8</td>
<td>97.8</td>
<td>54.1</td>
<td>-70.9</td>
<td>150.2</td>
<td>110.9</td>
<td>-46.4</td>
<td>84.5</td>
<td>69.3</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>135.1</td>
<td>132.9</td>
<td>121.7</td>
<td>104.6</td>
<td>69.7</td>
<td>-60.2</td>
<td>148.9</td>
<td>114.0</td>
<td>-29.6</td>
<td>78.2</td>
<td>66.0</td>
</tr>
<tr>
<td></td>
<td>2512</td>
<td>140.9</td>
<td>138.8</td>
<td>126.8</td>
<td>116.2</td>
<td>91.9</td>
<td>12.6</td>
<td>151.4</td>
<td>125.3</td>
<td>32.1</td>
<td>89.4</td>
<td>69.9</td>
</tr>
<tr>
<td></td>
<td>3162</td>
<td>142.7</td>
<td>140.5</td>
<td>125.9</td>
<td>122.2</td>
<td>104.6</td>
<td>52.6</td>
<td>151.5</td>
<td>130.0</td>
<td>67.1</td>
<td>105.5</td>
<td>93.5</td>
</tr>
<tr>
<td></td>
<td>3981</td>
<td>141.9</td>
<td>140.2</td>
<td>128.2</td>
<td>126.6</td>
<td>112.2</td>
<td>78.4</td>
<td>150.6</td>
<td>132.0</td>
<td>89.6</td>
<td>116.5</td>
<td>109.7</td>
</tr>
<tr>
<td></td>
<td>5012</td>
<td>138.5</td>
<td>136.6</td>
<td>127.3</td>
<td>125.0</td>
<td>112.9</td>
<td>92.0</td>
<td>145.6</td>
<td>130.0</td>
<td>101.5</td>
<td>120.9</td>
<td>118.2</td>
</tr>
<tr>
<td></td>
<td>6310</td>
<td>136.8</td>
<td>136.9</td>
<td>126.7</td>
<td>124.5</td>
<td>114.4</td>
<td>101.0</td>
<td>145.1</td>
<td>130.0</td>
<td>110.1</td>
<td>125.1</td>
<td>124.7</td>
</tr>
<tr>
<td></td>
<td>7943</td>
<td>136.3</td>
<td>135.8</td>
<td>121.6</td>
<td>125.0</td>
<td>114.4</td>
<td>102.5</td>
<td>142.5</td>
<td>128.5</td>
<td>112.3</td>
<td>126.1</td>
<td>126.8</td>
</tr>
</tbody>
</table>
D.2.4. 10' pile size

Impact Hammering with BMPs
Scenario 24 [P24/44 - 10 ft ø]

Receiver Stations
- CC1
- CC2
- CC3
- CC4
- CC5
- SC1
- WC1
- WC2
- WC3
- WS1
- WS2
- WS3
- WS4
- WS5

Power Spectral Density Level (dB re 1 µPa²/Hz)

Frequency (Hz)
Power spectral density levels (dB re 1 µPa²/Hz) for Scenario 24: Impact hammering a 10 ft diameter pile at Pier 24/44 with BMPs.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Receiver Station</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC1</td>
</tr>
<tr>
<td>10</td>
<td>129.7</td>
</tr>
<tr>
<td>13</td>
<td>132.1</td>
</tr>
<tr>
<td>16</td>
<td>140.3</td>
</tr>
<tr>
<td>20</td>
<td>144.9</td>
</tr>
<tr>
<td>25</td>
<td>149.1</td>
</tr>
<tr>
<td>32</td>
<td>156.4</td>
</tr>
<tr>
<td>40</td>
<td>166.3</td>
</tr>
<tr>
<td>50</td>
<td>168.0</td>
</tr>
<tr>
<td>63</td>
<td>171.2</td>
</tr>
<tr>
<td>79</td>
<td>177.8</td>
</tr>
<tr>
<td>100</td>
<td>180.2</td>
</tr>
<tr>
<td>126</td>
<td>181.6</td>
</tr>
<tr>
<td>159</td>
<td>184.5</td>
</tr>
<tr>
<td>200</td>
<td>186.0</td>
</tr>
<tr>
<td>251</td>
<td>182.2</td>
</tr>
<tr>
<td>316</td>
<td>172.9</td>
</tr>
<tr>
<td>398</td>
<td>170.6</td>
</tr>
<tr>
<td>501</td>
<td>171.7</td>
</tr>
<tr>
<td>631</td>
<td>170.5</td>
</tr>
<tr>
<td>794</td>
<td>167.7</td>
</tr>
<tr>
<td>1000</td>
<td>166.9</td>
</tr>
<tr>
<td>1259</td>
<td>167.2</td>
</tr>
<tr>
<td>1585</td>
<td>166.5</td>
</tr>
<tr>
<td>1995</td>
<td>162.6</td>
</tr>
<tr>
<td>2512</td>
<td>163.2</td>
</tr>
<tr>
<td>3162</td>
<td>160.6</td>
</tr>
<tr>
<td>3981</td>
<td>156.2</td>
</tr>
<tr>
<td>5012</td>
<td>149.4</td>
</tr>
<tr>
<td>6310</td>
<td>151.0</td>
</tr>
<tr>
<td>7943</td>
<td>150.8</td>
</tr>
</tbody>
</table>